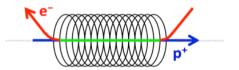
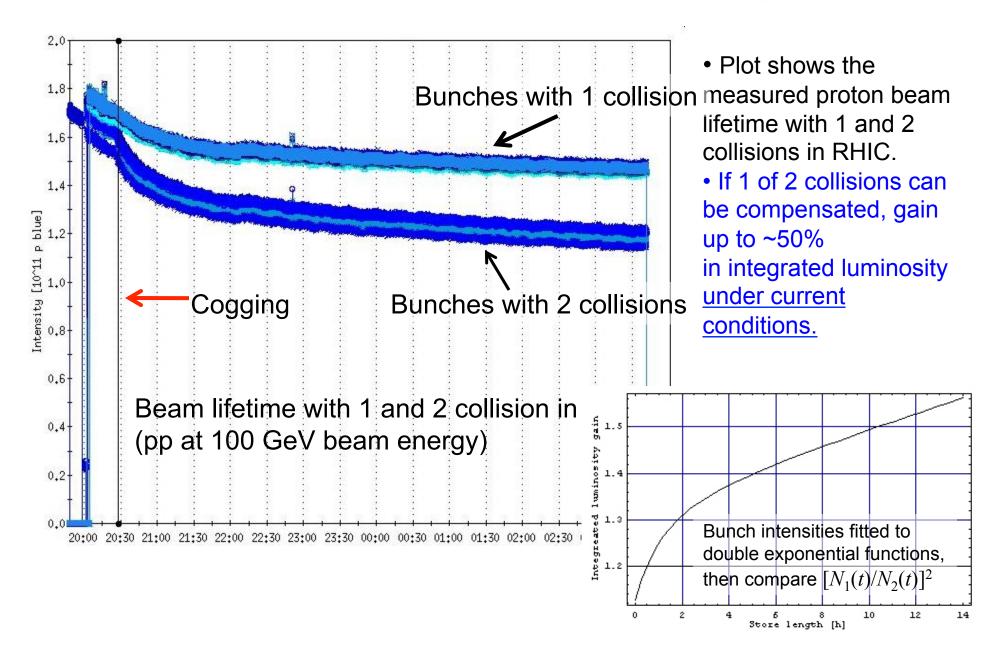

Electron lens overview

W. Fischer, M. Anerella, E. Beebe, D. Bruno, D.M. Gassner, X. Gu, R.C. Gupta, J. Hock, A.K. Jain, R. Lambiase, C. Liu, Y. Luo,
W. MacKay, M. Mapes, C. Montag, B. Oerter, M. Okamura, A.I. Pikin, D. Raparia, Y. Tan, R. Than, J. Tuozzolo, and W. Zhang


15 November 2010 CAD MAC-07, BNL



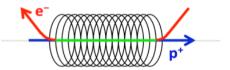
- RHIC beam lifetime with beam-beam, expected luminosity gain with HOBBC
- Head-on beam-beam compensation for RHIC
 - Principle
 - Tevatron experience
 - Nonlinear corrections in RHIC
 - Simulations
- Basic design choices for RHIC HOBBC
- Cost and schedule


[DCI hall in background, Laboratoire de l'accelérateur linéaire – LAL, Orsay, 11 October 2010]

Luminosity Gain with e-lenses (I)

Luminosity Gain with e-lenses (II)

1. More luminosity can be gained with an increase in the bunch intensity:


$$L = \frac{f_c N_b^2}{4\pi \,\varepsilon \,\beta^*}$$

- If 1 of 2 collisions can be compensated, then $N_{\rm p}$ can be doubled while total beam-beam $\xi \sim N_{\rm p}/\epsilon$ is maintained.
- This would yield a factor of 4;
 expect in practice <u>up to a factor of 2</u> due to incomplete compensation and other intensity dependent effects
- 2. Increase of proton bunch intensity requires:
 - Upgrade of the polarized proton source (presentation A. Zelenski)
 - Upgrades in RHIC

done: beam dump; in progress: Safety Assessment Document, instrumentation, ramp transmission, collimation

A single electron lens yields half of the luminosity gain of two electron lenses.

An increase in the

Blue (Yellow) bunch intensity,

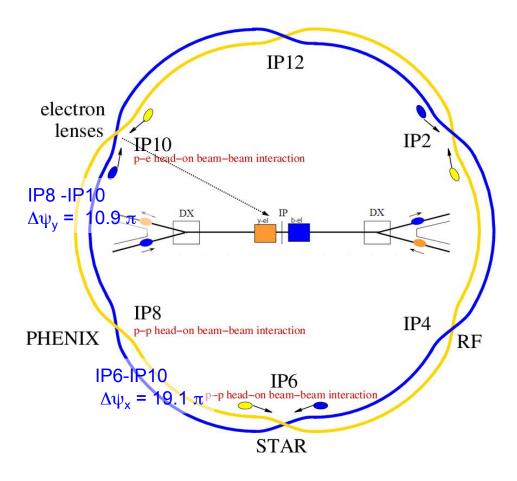
leads to an increase in the

Yellow (Blue) beam-beam parameter,

which can be compensated by a

Yellow (Blue) electron lens


 Luminosity is proportional to both Blue and Yellow bunch intensity


$$\xi_{B,Y} = \frac{1}{4\pi} \frac{N_{Y,B}}{\varepsilon_{rms,Y,B}}$$

$$L = \frac{f_c N_B N_Y}{4\pi \varepsilon_{rms} \beta^*} F\left(\frac{\sigma_s}{\beta^*}, \theta\right)$$

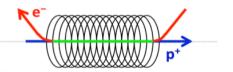
Two lenses are operationally easier since Blue and Yellow superconducting solenoids compensate each other for x-y coupling and spin rotations.

Electron lenses in RHIC

Basic idea:

In addition to 2 beam-beam collisions with **positively** charged beam have another collision with a **negatively** charged beam with the same amplitude dependence.

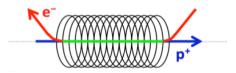
2 electron lenses installed in Tevatron, not used for head-on beam-beam compensation


Exact compensation possible for:

- short bunches
- $\Delta \psi_{x,y} = k\pi$ between p-p and p-e collision
- no nonlinearities between p-p and p-e
- same amplitude dependent kick from p-p, p-e

Only approximate realization possible

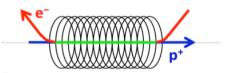
Head-on beam-beam compensation in DCI

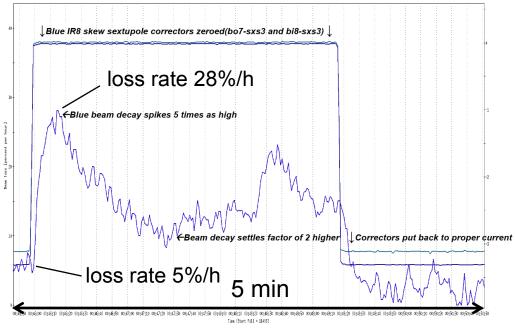

Head-on beam-beam compensation was only tested in DCI (~1975)

 4-beam collider (e⁺e⁻e⁺e⁻) for complete space charge compensation Building Main parameters: Section Circumference 94.6 m 1.8 GeV Energy Beam-beam & ~0.05-0.1 x-Ray Luminosity (design) ~10³² cm⁻²s⁻¹ 4 Beam Scheme Luminosity fell short of expectations by 2 orders of magnitude (2- and 4-beam luminosity about the same) Short-fall attributed to strong coherent effects

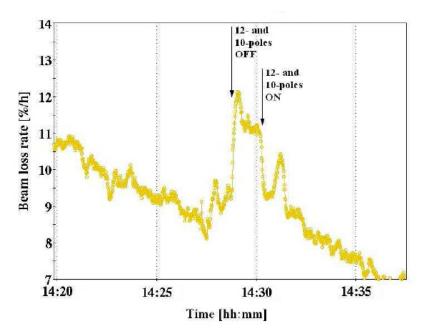
The Orsay Storage Ring Group, "Status report on D.C.I.", PAC77

- RHIC HOBBC is different from DCI HOBBC
 - Indirect compensation with single pass e-lens beam does not allow for coherent coupling between e-lens and proton beam
 - Beam-beam parameter in RHIC smaller by order of magnitude
 - → Expect coherent effects to be absent (e-lens/p-beam), or manageable (p-beam/p-beam)


Tevatron e-lens experience


- Details in presentation of C. Montag
- TEL experience shows that electron lens can be a reliable accelerator component (no Tevatron stores lost)
- Observed tune shift and spread with Gaussian profile as expected
- Electron current fluctuations of 10⁻³ can be tolerated
- With Gaussian profile offset does not lead to reduction in beam lifetime

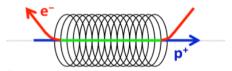
Nonlinear IR corrections in RHIC



- Use 6-pole, skew 6-pole,
 8-pole corrections (IR6 and IR8)
- Setting based on measured tune shifts from orbit bumps in triplets

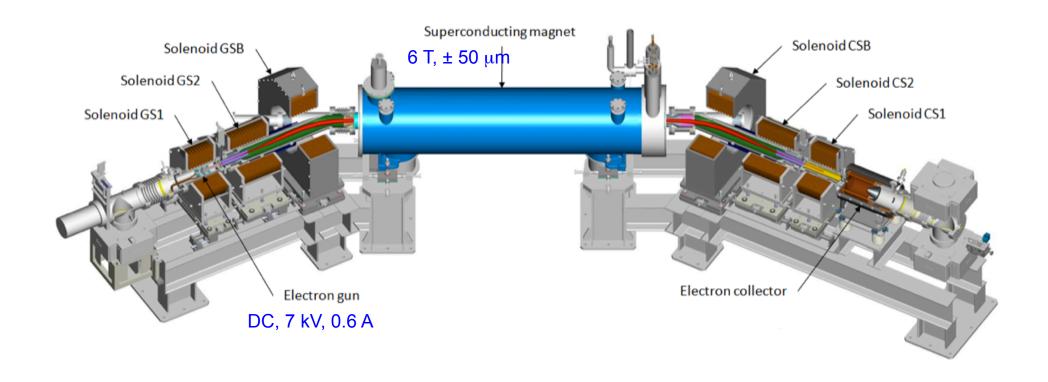
[F. Pilat et al., PAC'05; C. Zimmer APEX10]

- Have used 10- and 12-poles in 100 GeV pp operation (IR6 and IR8)
- Settings found iteratively based on observed beam loss rate
- L +4.3% with 1 beam corrected

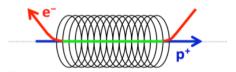


[presented at IPAC10]

High order nonlinear corrections are possible

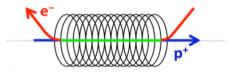


Beam-beam simulations



- Presentation by Y. Luo
- Simulations cannot predict beam lifetime of hadron beams with important contributions from nonlinear dynamics effects (beam-beam, magnet errors, parameter modulations)
- Use a number of measures that are known to correlate with long-term stability but no single measure gives decisive information (tune footprints, tune and amplitude diffusion, dynamic aperture, beam lifetime, emittance growth)
- All known measures are still useful for making relative comparisons between different situations
- For absolute predictions simulations must be benchmarked with existing data (open problem for beam lifetime)
- Large amounts of CPU power are generally available

RHIC electron lens gun collectors


Basic design decisions

- 1. Electron lenses in IR10 smallest distance to IP8 head-on beam-beam interaction (nonlinearities), available space
- 2. Both lenses in common area main solenoids compensate each other for coupling and spin, $\beta_x = \beta_y$ at e-lens locations drawback: β -functions relatively small (<= 10 m)
- 3. DC beam for compensation avoids noise introduced with HV switching (have pulsed operation for diagnostics)
- 4. Superconducting main solenoid need high field to match electron and proton beam size
- 5. Field straightness correctors incorporated in sc main solenoid compact solenoid
- 6. Transport solenoids and orbit correctors warm capital cost lower than for sc (sc transport solenoids with break-even time 5-10 years)
- 7. Diagnostics

basic diagnostic consists of BPMs and RHIC instrumentation (BTF, lifetime), working on bremsstrahlung and electron halo detection as alignment monitor

Requirement for electron lens

Electron beam size in the main solenoid

RMS beam size: 0.3 mm - 0.8 mm (issue: relatively small)

2. Gaussian shape of electron beam

good fit to 3 σ (issue: cathodes have limited size)

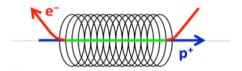
3. Straightness of magnetic field in main solenoid target of ± 50 µm after correction (issue: good overlap of e and p beam)

4. Steering electron beam in e-lens

maximum shifting: ± 5 mm in X and Y planes

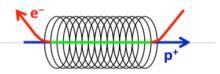
maximum angle : 0.1 mrad

5. Stability in electron current


power supplies stability better than 10⁻³

6. Overlap of electron and proton beams

robust real-time measurement with resolution better than 100 μm

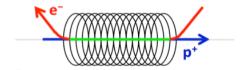


Funding, cost, and schedule

- 2 lenses funded as Accelerator Improvement Projects (1 ARRA + 1 regular)
- Recent DOE annual review of ARRA projects (10/04 10/05/2010)
 - emphasis on cost on schedule
 - seven recommendations on project management
 - responded to 3 with deadline 11/01/2010 (others have later deadline)
- Recent review of superconducting solenoid (10/20/2010)
 - focus on technical solution
 - nine recommendations, were evaluated
 - talk by R. Gupta on superconducting solenoid

RHIC electron lenses - 2 AIPs (1 ARRA + 1 regular)

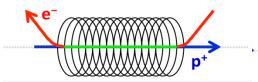
1st electron lens (ARRA AIP):


- Funding: \$4.0M (06/25/09)
- Pacing item: superconducting solenoid
 - Had planned to purchase in industry
 - Received only 1 bid from 9 bidders contacted
 (various reasons for no bids missing production capacity, exchange rate, ...)
 - Bid at about 3x budgeted value (budget for sc solenoid guided by 2 benchmarks: EBIS spare solenoid, Tevatron solenoids for electron lens)
 - Failed solenoid bidding also delayed project
 - Solenoid now build in Superconducting Magnet Division (allows for technically better magnet)
- Expected completion: 11/2012

2nd electron lens (AIP):

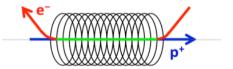
- Funding: \$3.1M (planned for FY2011/12 AIP)
- Expected completion: 11/2012 (same as 1st lens)

Schedule


	Task Name	Start	Finish	ARRA AIP Cos	AIP #2 Cost	ARRA AIP Cos	2009 Qtr 1 Qtr 2 Qtr 3 Qtr 4	2010 Qtr 1 Qtr 2 Qtr 3 Qtr 4	2011 Qtr 1 Qtr 2 Qtr 3 Qtr 4	2012 Qtr 1 Qtr 2 Qtr 3 Qtr 4	2013 Qtr 1 Qtr 2 Qtr
0	RHIC e-lenses	Thu 6/25/09	Sat 12/1/12	\$3,904,219	\$3,075,586	\$6,979,805	_				7
1	+ Funding e-Lens System Milestones	Thu 6/25/09	Wed 1/5/11	\$0	\$0	\$0	_		—		
6	+ Super Conducting Main Solenoids	Mon 4/5/10	Thu 3/1/12	\$1,102,909	\$394,427	\$1,497,336					
31	+ Warm Magnets	Wed 7/1/09	Tue 7/12/11	\$209,080	\$155,250	\$364,330	_				
63	+ Electron Guns	Thu 7/30/09	Tue 11/23/10	\$48,588	\$20,878	\$69,467	_		-		
70	+ Electron Collectors & Mechanical Supports	Thu 6/25/09	Mon 11/14/11	\$255,917	\$115,938	\$371,855	_			—	
128	+ Power Supplies	Thu 9/24/09	Wed 12/7/11	\$996,916	\$840,080	\$1,836,996	,	ļ		—	
203	+ Vacuum system	Thu 10/22/09	Wed 6/27/12	\$584,800	\$713,141	\$1,297,941		-			
316	+ Beam Instrumentation	Thu 8/27/09	Wed 5/30/12	\$457,136	\$694,505	\$1,151,641	-				
390	+ Controls	Thu 6/25/09	Mon 8/20/12	\$109,424	\$110,724	\$220,148	_				
578	+ Conventional Facilities	Thu 6/25/09	Wed 11/30/11	\$108,804	\$0	\$108,804	_			-	
606	+ Installation	Thu 6/25/09	Fri 10/5/12	\$30,643	\$30,643	\$61,286	_				•
675	+ Susbystem Test and Commissioning	Tue 11/15/11	Sat 12/1/12	\$0	\$0	\$0				-	—

Schedule (about 700 task lines) developed by the system experts and the scheduler.

Tunnel installation planned for summer 2012 for commissioning in Run-13


Major procurements

Major procurements: item >\$100k

	Major Procurements										
WBS		Planned cost	committed	Requisition released	Planned P.O. Date	Actual P.O. date	Purchase Order/Req	Planned delivery	P.O. delivery date	A ctua e eliver	
1.2	Superconducting solenoid		1497000	n/a	12/15/2009	5/1/2010	n/a	10/25/2011			
1.6	Collector Power supplies	351400	351400	12/28/2009	6/30/2010	7/16/2010	p.o. 161911	5/27/2011	7/16/2011		
1.3	Warm Magnets	279000	199400	7/16/2010	9/7/2010	9/13/2010	p.o. 174739	1/7/2011	3/30/2011		
1.6	Warm solenoid power supplies	390000		8/13/2010	10/25/2010		req 171237	7/29/2011			
1.6	long & short corrector power supplies	108000			3/24/2011			8/2/2011			
1.6	quench detection (fringe, long trim, main coils, chassis)	172000			3/24/2011			8/2/2011			
the solenoid value is burdened, all others are direct cost						in case of multiple deliveries, dates refer to first unit					

C-AD MAC-06 23-25 March 2009

Recommendations on electron lenses

 The committee encourages C-AD to support their electron lens R&D efforts with a close follow-up of the Tevatron experience.

Response: Participated in TEL experiments with Gaussian profiles (A. Valishev, C. Montag). See presentation C. Montag.

 Prepare a detailed commissioning plan and testing program already in the design phase of the electron lens.

Response: Not yet, recent focus still on hardware. Plan to do.

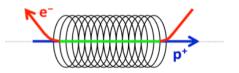
• The committee supports the suggested massive simulation effort, but recommends to first establishing a clear simulation strategy and performance evaluation.

Response: See presentation Y. Luo.

Consider solutions to outstanding optics and lattice optimizations in the tracking studies.

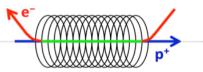
Response: Nonlinear chromaticity corrections included in simulations. C. Montag/S. Tepikian developed lattices with correct phase advance between IP8 and IP10

 The simulation studies should include an evaluation of strong-strong beam-beam effects, including coherent motion.

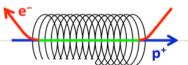

Response: Not yet. With TEL experience do not expect problems but plan to do (new Toohig fellow S. White). Still concentrating on weak-strong problems (presentation Y. Luo).

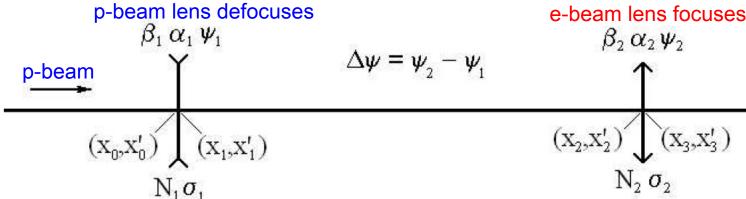
Add bunch length effects to the beam-beam and electron lens simulations.

Response: Done.



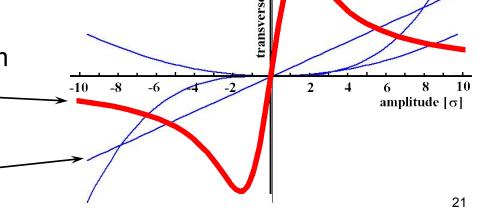
RHIC electron lens – summary


- Head-on beam-beam effect reduces proton beam lifetime observe bunches with 1 vs. 2 collision
- With partial head-on beam-beam compensation using electron lenses expect up to 2x more luminosity aim to compensate for 1 of the 2 collisions, also requires polarized source and RHIC upgrades (under way)
- Two electron lenses under construction both located in IR10, with mutually compensating 6 T superconducting main solenoids, 0.5-1 A DC e-beam
- Plan installation in summer 2012 for commissioning in Run-13


History of head-on beam-beam compensation

- Compensation schemes (S. Peggs, Handbook):
 - 1. Direct space charge compensation (4 beams)
 - 2. Indirect space charge compensation (electron lenses) **considered for RHIC**
 - 3. Betatron phase cancellation between neighboring IPs
- Proposals/studies of head-on beam-beam compensation to date:
 - COPPELIA → 4-beam (J.E. Augustine, HEACC, 1969)
 - DCI → 4-beam (G. Arzelia et al., HEACC, 1971) → only real attempt so far
 - CESR → e-lens (R. Talman, unpublished, 1976)
 - SSC → e-lens (E. Tsyganov et al., SSCL-PREPRINT-519 ,1993)
 - LHC → e-lens (E. Tsyganov et al., CERN SL-Note-95-116-AP, 1995)
 - Tevatron → e-lens (Shiltsev et al., PRST-AB, 1999)
 - e⁺e⁻ collider → 4-beam (Y. Ohnishi and K. Ohmi, Beam-Beam'03, 2003)
 - Electron-ion collider → e-lens (C. Montag and W. Fischer, PRST-AB, 2009)

Head-on beam-beam compensation concept


Exact compensation if $x_3(N_1,N_2) = x_3(0,0)$ and $x_3(N_1,N_2) = x_3(0,0)$:

- 1. Short p-beam and e-beam (i.e. zero phase advance during p passage), and
- 2. Same amplitude dependent force in p-beam and e-beam lens, and
- 3. Phase advance between p-beam and e-beam lens is $\Delta \Psi = k\pi$, and
- 4. No nonlinearities between p-beam and e-beam lens

beam-beam kick -

magnet kicks

Condition 2 cannot be realized with magnets, requires an electron beam

